Negative Exponents

Answer the following.

- 1. If an exponent is **positive or zero**, it tells how many copies of the base 1 is _____ by.
- **2.** If an exponent is **negative**, it tells how many copies of the base 1 is ______ by.
- 3. 8⁻³ can be thought of as 1 divided by copies of 8.
- **4.** Write x^{-5} using a positive exponent.
- 5. Write $\frac{1}{y^{-2}}$ using a positive exponent.

Complete the table.

Complete the table.						
Power	Meaning	Evaluated				
2 ⁴	$1 \cdot 2 \cdot 2 \cdot 2 \cdot 2$	16				
23	6	8				
7	1 · 2 · 2	4				
2 ¹ 2 ⁰	1 · 2	8				
2 ⁰	1	1				
2 ⁻¹	1 1	1				
	$\frac{1}{2^1} = \frac{1}{2}$	$\overline{2}$				
2-2	1 1	9				
	$\frac{1}{2^2} = \frac{1}{2 \cdot 2}$					
10	1 1	1				
	$\frac{1}{2^3} = \frac{1}{2 \cdot 2 \cdot 2}$	8				
2-4	11	1				
	11	16				
L	L	L				

Write each expression in simplified exponent form (using only positive exponents).

$$EX: \frac{1}{2^{-5}} = 2^{5}$$

12.
$$5^{-3}$$

13.
$$-3^{-4}$$

14.
$$x^2 \cdot 5^{-2}$$

15.
$$m^{-13}$$

Write each expression in simplest form. All numbers should be evaluated, and exponents on variables should be positive.

$$EX: \ \frac{x^{-3}}{2^{-5}} = \frac{2^5}{x^3} = \underbrace{\frac{32}{x^3}}$$

16.
$$\frac{1}{6^{-2}} + 2^0$$

17.
$$2^{-2} + 3^{-1}$$

18.
$$\frac{1}{4^{-1}} - y^0$$

19.
$$a^{4-7}$$

20.
$$2^{-1} \div \frac{5}{4}$$

$$21. -\frac{9}{5} \div \frac{1}{2^{-1}}$$